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Preface

The Defense National Stockpile Center (DNSC) maintains stockpiles of
high-grade ores at various locations throughout the country and has a require-
ment to produce current weight estimates for selected piles as part of a national
audit. A geophysical investigation to determine the material density and total
weight of selected stockpiles of high-grade ores has been conducted by person-
nel of the Geotechnical Laboratory (GL), U.S. Army Engineer Waterways
Experiment Station (WES). Analysis of microgravity measurements provide
representative bulk density values of the high-grade ore. The weight of each
ore stockpile is computed by multiplying the average density values and sur-
veyed ore pile volume determinations. Microgravity measurements were col-
lected over ore stockpiles at the following locations during the dates listed:

Seneca Army Depot, NY 15-30 October 1996
Belle Mead Depot, NJ 3-8 November 1996 and
2, 3 December 1996
Large, PA 17-20 November 1996
Somerville Depot, NJ 3-5 December 1996
Stockton Depot, CA 16, 17 December 1996

The study was performed under sponsorship of the Defense National Stockpile
Center, Defense Logistics Agency, Ft. Belvoir, Virginia. The DNSC Project
Coordinator was Mr. G. A. Vanegas.

The overall test program was conducted under the general supervision of
Drs. W. F. Marcuson, Director, GL, and A. G. Franklin, Chief, Earthquake
Engineering and Geosciences Division (EEGD). Mr. Keith J. Sjostrom was
the principal investigator. This report was prepared by Mr. Sjostrom under the
supervision of Mr. J. R. Curro, Jr., Chief, Engineering Geophysics Branch.
Data acquisition and analysis support was provided by Drs. Janet E. Simms
and Richard D. Lewis and Messrs. Donald E. Yule, Rodney L. Leist, and
Michael K. Sharp, EEGD, GL. Assistance in report preparation was provided
by Ms. Lori M. Davis, EEGD, GL. Graphical presentation of the ore piles
was provided by Mr. Grady A. Holley, Applied Research Associates,
Vicksburg, MS.

Acknowledgment is made to Messrs. Stuart B. Green, Kimball D. Slaton,
William C. Butler, Anthony R. Jackson, Wayne J. Roberts, Jr., and Morris S.
Woodruff, and other employees of DIMCO, Inc., Vicksburg, MS, for
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surveying and determining the volume of each ore pile, providing the eleva-
tions of each gravity station, and assisting in the layout of the geophysical sur-
vey lines. The topographic surveys were performed during the periods

15 October-16 November and 16-18 December 1996.

At the time of publication of this report, Director of WES was
Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.




Conversion Factors,
Non-SlI to SI |
Units of Measurement

Non-SI units of measurement used in this report can be converted to SI units

as follows:
Multiply By — To Obtain
cubic feet 0.02832 cubic meters
cubic yards 0.76455 cubic meters
feet 0.3048 meters
gal (measure of gravity) 1.0 centimeters per second squared
gal {(measure of gravity) 0.01 meters per second squared
microgal 1.0 x 10°% meters per second squared
miles (U.S. statute) 1.6093 kilometers
pounds (mass) 0.45359 kilograms
pounds per cubic foot 0.01602 grams per cubic centimeter
|} pounds per cubic foot 16.0184 ; kilograms per cubic meter
tons 907.1847 kilograms

vii




1 Introduction

Background

The Defense National Stockpile Center (DNSC) of the Defense Logistics
Agency, Ft. Belvoir, VA, maintains stockpiles of high-grade ores at various
defense depots throughout the country. While the initial or as-delivered
weights of many of the piles of materials are known or have been estimated in
previous years, the measures or estimates, many of which are 30 to 40 years
old, may not be reliable. DNSC has a requirement from the Inspector General
to produce current weight estimates for statistically selected piles as part of an
Audit of National Defense Stockpile Transaction Fund FY 1996 Financial
Statements. The reliability of the weight estimates are important for assessing
the current ore inventory within the Federal government and for setting fair
market values of the material when the ore stockpiles are sold to industry.

DNSC has requested assistance from the U.S. Army Engineer Waterways
Experiment Station (WES) in determining the weight of 45 piles of heavy metal
ores in the Defense National Stockpile at five locations: Seneca Army Depot,
NY; Belle Mead Depot and Somerville Depot, NJ; Stockton Depot, CA; and
an unmanned facility in Large, PA (see Figure 1). The pile materials are all
heavy metal ores consisting of either aluminum oxide, ferrochrome (high and
low carbon content), or ferromanganese. The size of the materials in the piles
range from fines to boulder size.

Standard geotechnical methods for bulk density determination are not
readily applied to the in-place pile materials because of the large range in size
of the ore. Measuring the near-surface density values of the pile materials by a
technique such as the ring density test will not give representative density val-
ues representative of the material near the base or center of the piles. Density
determination methods which require displacing materials, i.e., material placed
in known volume containers and weighed, are likely to produce values that are
less than the actual material density.

A method for computing the weight of the in-place ore stockpiles and deter-
mining a truly representative bulk density for each pile is to measure the gravi-
tational attraction of the piles. The gravitational attraction of the piles is the
result of the integrated effect of the in-place bulk material density distributed
over the volume of the pile. Analysis of the gravitational anomaly recorded
over piles of ore results in estimates of the representative bulk density of the
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ore material. The weight for each pile is computed by multiplying the average
bulk density values with the measured pile volume. Gravitational determina-
tion of near-surface densities for use in gravity survey data reductions are done
routinely in geophysics. However, determination of densities by gravity sur-

© veys is a non-standard technique for the present application.

Purpose and Scope

The objectives of this investigation are to determine the in-place weight of
45 ore piles representative of the ore stockpiled under DNSC jurisdiction. The
results will be used to check the current ore inventory as part of an audit of the
National Defense Stockpile Transaction Fund, Fiscal Year 1996 Financial
Statements. Pile volumes are determined using standard topographic surveying
procedures. Material density values are derived through analysis of micrograv-
ity measurements performed over ore stockpiles. Pile weight is the product of
the pile volume and material density.

Location of Test Sites

Forty-five ore piles were statistically chosen by the Inspector General's
Office to be audited. The selected ore stockpiles are located as follows.
Twenty-four ore piles are located at the Seneca Army Depot in Romulus, NY.
The pile designations, material types, dimensions, and originally reported gross
weights, as provided by DNSC, are listed in Table 1. The material breakdown
by pile is as follows: two piles of aluminum oxide, nine piles of high-carbon
ferrochrome, and 13 piles of ferromanganese. Eight piles of high-carbon
ferrochrome are located at an unmanned storage facility in Large, PA which is
located approximately twelve miles south-southeast of Pittsburgh, PA. The
information on record for these piles are listed in Table 1. Twelve ore stock-
piles are located at the Belle Mead Depot in Belle Mead, NJ, located approxi-
mately 10 miles south of Somerville, NJ. The 12 ore stockpiles are
categorized as follows: one pile of high-carbon ferrochrome, six stockpiles of
low-carbon ferrochrome, and three ore stockpiles of high-carbon ferromanga-
nese. The pile descriptions, dimensions, and reported weights are outlined in
Table 1. DNSC records list one combined reported weight value for Piles #3
(1 of 2) and #3 (2 of 2) and likewise for Piles #4 (1 of 2) and #4 (2 of 2). Two
of the 45 piles selected for this study are located at the Somerville Depot south
of Somerville, NJ. The piles, as listed in Table 1, are comprised of low-
carbon ferrochrome and designated as Piles #3 and #4. The final pile of the
study is located at the Stockton Depot in Stockton, CA. The ore pile is denoted
as Pile #1 and material classified as high-carbon ferrochrome (see Table 1).
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2 Principles of Microgravity
Surveying

The Microgravity Method

Gravimetry is one of the fundamental methods with which to map the distri-
bution of the subsurface geology and determine the nature and magnitude of
subsurface density anomalies. Near-surface density anomalies produce local-
ized variations in the gravitational field near the surface of the earth. Syste-
matic measurements of the gravitational field allows the field to be mapped on
the surface of the earth. The measured gravity field is corrected for variations
in the normal gravitation field of the earth and any large scale gravity effects
relative to the survey area of interest. The resultant values, with respect to an
arbitrary reference datum, are the gravity anomaly field. Analysis of the grav-
ity anomaly field provides estimates of the density contrast between the anoma-
lous feature and surrounding earth material. The depth to and geometry of the
localized feature are also defined.

The normal gravitational field on the earth’s surface is given by 9.80 m/s’.
Instead of using the umnits of m/s* for gravitational acceleration, geophysicists
often employ the unit of Gal where 1 Gal = 10? m/s’>. Microgravimetry refers
to high-resolution surveys of the gravitational field with gravimeters that have a
measurement sensitivity and accuracy of approximately one microgal (1 uGal).
The quantity of 1 pGal = 10 Gal = 10® m/s?>. Therefore, microgravimetry
involves the measurement of gravity with a precision and accuracy of approxi-
mately 107 times that of the normal earth's gravitational field. The micrograv-
ity measurements recorded for this study were completed using a LaCoste and
Romberg Model D Gravimeter as shown in Figure 2. The measurement char-
acteristics of gravimeters used for microgravity surveys are discussed in detail
in Butler (1980) and Torge (1989).

Microgravimetric surveys are of two types: (a) profile surveys, where
gravity measurements are made along traverses generally perpendicular to the
presumed strike of a linear-type structure, such as a fault, ridge, valley, buried
river channel, or an elongated pile of material on the surface; and (b) areal sur-
veys, where gravity measurements are made at stations on a grid over an area.
Microgravity surveys are often conducted with measurement points separated
by 5 to 30 ft to enhance the detectability and resolution of small and closely
spaced subsurface features. Station locations and relative elevations must be
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accurately determined by a site leveling survey in which the station locations
and elevations are measured to the nearest 0.1 and 0.01 ft, respectively. The
field procedures used for the surveys are dictated by considerations of survey
objectives and subsequent corrections which must be made to the measured
data. The measurements in a microgravity survey are normally made relative
to a local reference station, and there is usually no attempt to tie the values to
an absolute gravity determination.

Analysis of the surface gravity anomaly, in many cases, allows the mass
excess or deficiency associated with the density contrast to be determined (But-
ler 1980; Telford et al 1990). When the density values associated with the den-
sity contrast and the volume of the feature are known or can be measured, then
the actual mass associated with the localized feature can be determined. For
unique cases where a profile of gravity measurements crosses a topographic
surface feature such as a hill, ridge, or ore pile and the surface feature being
investigated is entirely above some reference datum, it is possible to determine
the actual bulk density of the material comprising the structure directly from
the gravity measurements (Nettleton, 1940; Parasnis, 1979; Telford et al,
1990; Sjostrom and Butler, 1996). It is this last capability that is used to deter-
mine the bulk density and weight of an ore stockpile.

Field Procedures

Gravity values were collected along traverses established across the base,
side slopes, and tops of each ore stockpile. The gravity survey lines were
established and measured using microgravimetric procedures such as those out-
lined in Butler (1980). For elongated piles, the profile lines are oriented
approximately perpendicular to the long axis or strike of the ore pile with two
or four profiles crossing each pile depending on the pile dimensions. Each sur-
vey line consists of approximately 15 to 20 measurement stations with each
station consisting of a leveled concrete pad like the one shown in Figure 3.

The measurement stations are located so that at least three stations are posi-
tioned on either side of the pile on the non-ore base material to provide back-
ground gravity readings. The remaining stations are located on the side slopes
and tops of the ore piles as. shown in Figures 4 and 5, respectively. These are
the measurement stations from which the gravity anomaly is determined and
material densities derived. Typically, three measurement stations are located
on each side slope with the remainder positioned on top of the pile. Horizontal
spacing between stations varies from 5 to 20 ft depending on the number of
gravity stations and overall width of the piles. Horizontal locations (x,y coor-
dinates) and elevations (z coordinate) are established by electronic surveying
instruments using standard topographic surveying procedures as shown in Fig-
ure 6. Horizontal positions are measured to an accuracy of 0.1 ft and eleva-
tions are determined to an accuracy of 0.01 ft using an arbitrary reference
elevation. In addition to the position surveying performed for establishing the
gravity survey lines, position and elevation measurements are also acquired for
use in determining pile volumes.
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Each gravity profile line has a base station located off the pile at the 'start’
of the survey line. All elevations and gravity measurements (see Figure 7)
along the line are referenced to the base station elevation and base station grav-
ity measurement. The gravity measurements along each profile line are typi-
cally determined in two measurement programs. Following the initial gravity
readings at the base station, the first measurement program consists of approxi-
mately ten measurements as the survey proceeds towards and up the slope (see
Figures 8 and 9) of the ore pile, stopping at 2 measurement station that is
located near the crest of the stockpile; often the highest elevation along the
profile. Once the reading at the top of the pile is collected, the gravity survey
loops back to the base station for additional readings to conclude the first
program. The second measurement program for the profile line starts at the
opposite end of the line from the base station and proceeds up the 'back' side
of the ore pile. Gravity readings are collected until the crest is reached. This
station is the same stopping point as used for the first program. After record-
ing the gravity meter reading, the survey again loops back to the base station
for the third and final set of base station readings. This two program proce-
dure results in three sets of measurements at the base station and two readings
at the central measurement point of the line. At both the Seneca Army Depot
and Somerville Depot, pairs of stockpiles, each with their long axis parallel to
the other, were incorporated into the investigation. The microgravity survey is
then broken into four measurement programs. This procedure results in five
gravity measurements at the common base station and two readings at the mid-
point of each pile.

The multiple base station measurements are used for the earth tide and
instrument drift corrections and data quality control. Since measurements at
the base station are used as the reference data for the survey line and for cor-
recting all other gravity measurements along the line, special care is exercised
in acquiring data at the base station (Butler 1980). The two measurements at
the central measurement point are also used for survey quality control. Equip-
ment performance and time constraints are also applied to each data acquisition
program. If any type of equipment problem, such as jarring the instrument or
low battery output, occurs during a program, the entire program is repeated. If
the survey time exceeds 60 min for an individual program, the survey line is
subdivided into additional programs. However, programs are typically com-
pleted in less than 60 min. Also, if the data quality and multiple readings are
not within set limits (Butler 1980), the survey program may also have to be
rerun.

Gravity Data Corrections

Corrections to microgravity data are required in order to compensate for
normal gravity variations at the site over the time span required for the survey.
Measured values are reduced in such a manner as to imply that all gravity data
are collected along the same reference datum by implementing gravity correc-
tions for the effects due to latitude, elevation, topography, earth tides, and
instrument drift. In this manner, variations in the corrected gravity values are
assumed to be caused by the stockpiles of processed ore. The normal gravity
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variations and compensating corrections applied to microgravity data are dis-
cussed in brief below. For a more in depth discussion of gravity data correc-
tions, please refer to Butler (1980), Telford et al (1990), or Sjostrom and
Butler (1996).

Corrections for time variations (drift). Gravity values over the survey
area change with time because of earth tides and instrument drift. Earth tides,
like ocean tides, are caused by the orientation of the sun and moon and are of
sufficient amplitude to be detected by sensitive gravity meters. Instrument drift
is caused by creep of the metal components in the meter due to thermal expan-
sion or excessive movement. Over short time periods (less than 60 min), drift
due to tidal and instrument fluctuation can be assumed to be linear over time.
The usual procedure for correcting for drift is to reoccupy a base station fre-
quently and assume that the gravity values at all stations in the survey area vary
in the same manner as those between readings at the base station. Differences
in gravity values at the base station are plotted with respect to time to produce
a drift curve. The drift correction, denoted as Ag,;,, for each station is deter-
mined directly from the graph. Positive drift requires a negative correction and
vice-versa.

Latitude correction. Both the rotation of the earth and its non-spherical
shape produce a change in gravity values as a function of latitude. For micro-
gravity surveys, it is usually sufficient to assign a reference latitude to the base
station and use Equation 1 to compute latitude corrections for all other stations.
The latitude correction, denoted as Ag, , is:

Ag, - i[o.2471 esin( 2 ¢ )“TG"’) « As (1)

where As is the north-south distance (in feet) between the measurement and
base station and ¢ is the reference latitude of the base station. The correction
term is added to the measured gravity value if the station is positioned south of
the base station and subtracted if located north of the base station.

Free air correction. The free air correction, denoted as Ag,z,, compen-
sates for variations in gravitational attraction caused by the changing distances
of the measurement stations from the reference datum. The free air correction
formula is:

wGal

Ag,p, = £94.041 * Ah [¥))

where Ah is the difference in elevation (in feet) between the measurement sta-
tion and reference elevation of the base station. The correction is added to the
measured gravity value if the station is higher in elevation than the reference
elevation, and vice versa.

Chapter 2 Principles of Microgravity Surveying




Bouguer correction. The Bouguer correction compensates gravity values
affected by differing masses of material beneath the measurement stations
caused by elevation variations. The ore material between the reference eleva-
tion of the base station and the elevation of a measurement station is approxi-

- mated by an infinite horizontal slab with density equal to that of the material
beneath the station. The correction, denoted as Ag,, is calculated using the
Bouguer slab formula:

Ang=-l_-[l2.774*p "TG‘”) * Ah 3)

where p is the material density (in g/cm®) and Ah is the elevation difference (in
feet) between the measurement and base station. The quantity Ag, is sub-
tracted from the measured gravity if the station is above the reference eleva-
tion, and vice versa.

When all of the preceding corrections have been applied to the observed
gravity data, the result is the Bouguer gravity value, denoted as g;. The
Bouguer gravity value at a measurement station is given by

85 = 8ops £ A8y T ALy T Agp £ Agy, 4)

where g, is the observed gravity reading and the remaining terms are the
gravity corrections discussed above. Subtracting the gravity readings recorded
at the base station, denoted as g,,.., from the Bouguer gravity values at each
station using the equation

AgB = gB - gbase (5)

results in the Bouguer gravity anomaly. The Bouguer gravity anomaly is used
in determining the density of the ore pile material whether through direct calcu-
lation or gravity modeling algorithms.

Determination of Bulk Material Density

In standard gravity surveying to determine geologic structure, the Bouguer
corrections in the reduction of gravity data require a knowledge of the average
densities of the near-surface rock and sediments. However, the premise of this
application is to compute the material density values from the microgravity
readings. Two methods were used to determine the density of the stockpiled
ores. The first method, developed by Nettleton (1940), is an indirect, graphi-
cal technique to determine density. A plot of the observed gravity values that
have undergone the drift, latitude, and free air corrections versus distance
along the survey line is strongly correlated to the shape of the measured topog-
raphy over the pile. Applying the Bouguer correction numerous times over a

Chapter 2 Principles of Microgravity Surveying




range of material density values, the resultant gravity anomaly curve that has
the least correlation with the topography curve, ideally a correlation factor of
zero, is considered to be the most nearly correct bulk density value for the ore
pile material. An example of this application is illustrated in Figure 10. This
method has the advantage of averaging the effect of density variations more
accurately than can be done from surface or core samples (Dobrin 1976). This
method works best when the near-surface material is relatively homogeneous in
nature.

The second method is an analytical approach developed by Parasnis (1979)
and similar to Nettleton's graphical method. Expanding Equation 5 to include
the observed gravity readings and all of the gravity correction terms, we obtain
the equation

O:[gobs_gbme+(iAgzDiAgzLiAngA)iAng] _AgB (6)

Further expansion of the Bouguer slab correction term Ag,; in Equation 6 and
subsequent algebra solving for the material density parameter p, we get

gob;_gbme+(iAgzDiAgzLiAgsz) B AgB
12.774 = Ah 12.774 x Ah

p= (7

where p is defined in terms of g/cn’. For a single, straight line gravity tra-
verse over a survey area, Equation 7 resembles the formula for a straight line;

i.e.,y = mx-b. To solve for an average bulk density value, Parasnis consid- _

ers the Bouguer gravity anomaly, defined in Equation 5, to be a random error
with a mean value equal to zero (Telford et al 1990). Therefore, plotting the
values in the numerator versus the values in the denominator of the first term
and drawing the best fit straight line through the data points and through the
origin, the absolute value of the slope will be the material density p. Obvi-
ously, as Telford (1990) points out, all the points will not lie on this line unless
the subsurface is uniform and the Bouguer anomaly Ag; is everywhere zero.
Therefore, the best fit straight line through the data is found using least squares
analysis. An example of Parasnis's method is presented in Figure 11.

Parasnis’ method was used almost exclusively for the analysis of the micro-
gravity data. Nettleton’s method was used in conjunction with Parasnis’
method in instances where the gravity data sets contained erratic or spurious
values or when adjacent sets of piles were surveyed. However, no matter
which analysis procedure is used and depending on the number of gravity sur-
vey lines performed over each ore pile, two, three, or four spatially distrib-
uted, volume-averaged bulk density values are determined for each survey.
The density values are averaged to determine a single in-place density value for
the ore pile material.
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3 Data Analysis and Results

Determination of Ore Pile Volume

Topographic surveys to compute the volumes of the ore stockpiles were
completed using standard land surveying methods. Topographic field data
were acquired using a Nikon A20 total station system with accompanying data
collector, theodolite, and laser rangefinder. Horizontal data were referenced to
an arbitrary coordinate system at each site using the point 1,000 North/

1,000 East (in U.S. Survey Feet) as the origin. The vertical data are refer-
enced to an elevation of 100 feet.

The limits of the topographic survey program are determined by the location
of the gravity measurement stations on and off the ore pile. This program
includes surveying each ore pile from toe to toe while taking into account all
ridges, depressions, and other significant characteristics on the pile surface.
The base of each stockpile is determined by a planar surface passing through
the elevation points along the toe of the pile. It should be noted that any ore
material below the planar surface caused by material settlement underneath the
Dpile is not included in the pile volume determination and, hence, the ore stock-
pile weight.

The acquired elevation data are analyzed using both two- and three-
dimensional (2-D, 3-D) maps. The 2-D contour plots illustrate the elevation of
distinct features unique to each pile. The contour plots for each pile at the five
project areas are illustrated in Appendices A through E. The contour interval
is one foot. Volumes were computed using 3-D surface models of each ore
pile. The elevation points on the surface models are triangulated to form
columnar grids in which the volume estimates for each triangulated grid section
are computed between the 3-D surface model and planar base of a pile. Grid
volumes are accumulated to provide a total reported volume, in units of cubic
yards (yd*), for each pile. The average volume of each pile is noted on the
contour plots, listed in Table 2, and used in the weight calculation of ore
material.

The registered land surveyor leading the ore pile volume determination por-
tion of this effort established a volume determination accuracy of +5 percent.
The volume accuracy clearly depends on the following factors: (1) number of
data points used to characterize the pile, (2) definition of irregularities in the
ore pile geometry, and (3) accurate determination of the base and outside edge
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of the pile. It should also be remembered that any portion of the ore material
below grade (i.e., below the surrounding ground surface level) caused by
material settlement or an irregular placement surface cannot be accounted for
in the land survey volume calculation.

Calculation of Material Density

Depending on the long axis dimension of each ore pile, two to four gravity
surveys are performed to determine the average bulk density of the stockpiled
ore. The observed gravity data acquired along each profile are analyzed using
Equation 8 and applying Parasnis' Method to compute a density value over an
individual survey line. Nettleton's Method, an indirect, graphical technique to
determine density, was also used to verify results. The bulk density values are
averaged to determine a single in-place density value for the ore material.
Since microgravity measurements were performed only over randomly selected
piles rather than each, individual pile, the average density values for piles of
similar ore material are further averaged to obtain a single, representative den-
sity value that may be applied to those piles in which no gravimetric surveys
were performed.

Based on published examples (Parasnis 1979; Dobrin 1976; Telford et al.
1990), the ore material density determination accuracy is estimated at
+0.2 g/cm’® (12.4 1b/ft®). For example, if the computed bulk material density
value is 2.5 g/cm’, this accuracy estimate translates to approximately +8 per-
cent of the true value. For more dense ore pile materials, the computed
density values become more accurate.

Calculation of Ore Pile Weight

Following determination of representative material density values from the
microgravimetric measurements, the total weight of the ore pile material is
calculated by incorporating the volume estimates of each respective ore pile.
The computed weight of the ore stockpiles are computed using the equation

Weight = (p) * ( 62.428]%] . ( 27;’733) (V) @®)

where p is the computed density of the ore material (in g/cm’) and V is the
calculated volume of the ore pile (in yd®) above the ground surface. The total
weight is given in units of pounds (Ib). Based on the accuracy of the ore
material density calculation and pile volume determination, the computed
weight of an ore stockpile should be accurate to within +10 to +15 percent
depending on the actual density of the ore material. Outside factors such as
settlement of the ore material below the ground surface, irregular pile
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geometries, poor definition of the pile base, or poor quality gravity data will
increase the error range.

The difference between the originally reported weight of each pile of ore
and the calculated weight is given in terms of percent using the equation

Calculated -~ Reported

Difference =
Reported

) * 100% 9)

where 'Calculated' and 'Reported' are the respective pile weights in units of
pounds (Ib). In the discussion of the results, negative percent differences rep-
resent calculated pile weights that are less than the reported gross weights.

Results

The computed volumes, material density values, and weights for each pile
at the five DNSC sites are listed in Table 2 and the differences between the
computed weight estimate and original ore pile weights are presented in
Table 3. Negative percent differences indicate that the computed ore pile
weight values are less than those values reported by DNSC.

Seneca Army Depot, New York

Twenty-four stockpiles of ore were surveyed at the Seneca Army Depot and
may be categorically grouped into three material types. The stockpiled ores
consist of either aluminum oxide, high-carbon ferrochrome, or high-carbon
ferromanganese. The pile descriptions, dimensions, and reported weights as
provided by the DNSC are listed in Table 1. Elevation contour plots and
photographs illustrating each ore pile are presented in Figures A-1 through
A-35 in Appendix A. The results for each group of ore stockpiles are
described below.

Aluminum oxide. Aluminum oxide ore is stockpiled in two piles at the
Seneca Army Depot as shown in Figures A-1 and A-3. The piles are desig-
nated as Piles #40 and #43 and consist of 110,812,140 and 29,964,520 Ib of
ore material, respectively, as documented by DNSC. Both piles are situated on
weathered asphalt pads. The pad for Pile #40 slopes gently downward towards
the north (see Figure A-2) and some settlement of the ground beneath the ore
pile has taken place. Four microgravity survey lines were performed over Pile
#40 as indicated in Figure A-2. Each survey line has 11 gravity stations posi-
tioned on the ore material. The volume of the ore pile is estimated at
30,202.5 yd®>. The computed average material density value derived using the
gravity data analysis procedures and algorithms is 1.925 g/cm®. Using the
computed averages for the material density and pile volume (see Table 2), the
estimated total weight is approximately 97,997,909.8 1b. The difference
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between the computed weight in relation to the weight on record (see Table 3)
is approximately -11.56 percent.

Two microgravity survey lines were performed over Pile #43 as indicated in
Figure A-4. The average bulk density of the ore material (see Table 2) com-
puted from the gravity data is 2.125 g/cm®. The volume of Pile #43 deter-
mined from the elevation survey is estimated at 7,467.9 yd®>. The computed
weight of the ore material in Pile #43 is 26,748,572.8 1b (see Table 2). The
computed weight of the aluminum oxide varies from the reported gross weight
value by -10.73 percent. However, it was noted during the field investigation
that some material had been removed from the northeastern corner of the pile
since the material was originally placed. If this is the case, the computed
weight is likely more representative of the current weight than the percent
difference value implies.

Ferrochrome, high-carbon. Nine piles of high-carbon ferrochrome are
located at the Seneca Army Depot and the dimensions and reported gross
weights are listed in Table 1. The piles are positioned at random with each pile
situated on a weathered asphalt pad. Photographs and elevation contour plots
of each ferrochrome pile are presented in Figures A-5 through A-17. The
close proximity of the piles to one another made accurate determination of the
pile base and toe difficult. It was also noted that along Piles #20 and #25-A
through #25-C, soil, brush, and leaves covered portions of the piles whereby
further hampering definition of the toe and base of the pile. Pile #49 was
placed to the north of and adjacent to Pile #18 causing the toes of each pile to
be within two feet of each other. The measured pile volumes are indicated on
the elevation plots and listed in Table 2.

Microgravity data were gathered over four of the nine ferrochrome stock-
piles. The four piles, Piles #18, #19, #25-B, and #49, were randomly selected
prior to the site investigation. Three gravity surveys were performed over
Piles #18 and #49, the two largest piles at the site, as shown in Figures A-6
and A-16, respectively, whereas Piles #19 and #25-B had two survey lines
each. However, the quality of the gravity data collected over Pile #25-B was
poor and not used in the density determination procedures. The computed
average material densities from the remaining three piles ranged from 2.991 to
3.178 g/cm®. The calculated weight for each of these piles is listed in Table 2.
For the remaining five piles not surveyed with the microgravity technique and
Pile #25-B, the resultant average bulk density value is determined by averaging
the densities from the three piles surveyed. The average bulk density value of
the ferrochrome material for Piles #20, #25, and #25-A through #25-D is
3.096 g/cm®. The calculated weights for these piles are also listed in Table 2.
The percent difference between the calculated weights and reported gross
weights at the time of placement are outlined in Table 3. The percent differ-
ence values for the nine piles range from -5.03 to -27.94 percent indicating
that, for each pile, the computed weight is less than the reported weight. The
piles with the higher percent difference values are those piles where the extent
of the pile and pile base were difficult to determine.

Ferromanganese, high-carbon. Thirteen stockpiles of high-carbon ferro-
manganese are located at three areas within the Seneca Army Depot. The first
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cluster consists of five piles designated as Piles #10, #13, #17, #23 and #35.
The second grouping of ferromanganese piles, located approximately 500 ft
north of the first, is comprised of seven piles denoted as Piles #11, #14, #21,
#22, #34, #37, and FM-1. Pile #31 is located near Pile #40. The dimensions
and reported gross weights, as provided by DNSC, of each pile are listed in
Table 1. Photographs and elevation contour plots of the piles are presented in
Figures A-18 through A-35 in Appendix A. Each pile is situated on a
weathered asphalt pad. The piles within the first two clusters of stockpiles are
positioned in two columns whereby a single pile may be adjacent to two or
three other piles. This is clearly shown in Figures A-24, A-26, and A-28. The
pile bases for many of the piles are in contact with the bases of adjacent piles
even though the pile boundaries are crudely defined by weathered railroad
crossties. This makes definition of the pile base and measurement of the base
elevation difficult and may be a possible source of errors in the volume deter-
minations. The computed pile volumes for the stockpiles of ferromanganese
are listed in Table 2 and indicated on the elevation contour plot of each ore
pile.

Microgravity surveys were performed over six of the 13 ore piles with the
six piles randomly selected prior to the site investigation. Some modification to
the original pile selection had to be done due to the orientation of the piles.

The ore stockpiles surveyed during the investigation are Piles #13, #17, #10
and #23, and #22 and FM-1. Piles FM-1 and #22 and Piles #10 and #23 are
adjacent sets of piles as illustrated in Figures A-25 and A-27, respectively.
Four gravity surveys were performed over Piles FM-1 and #22 (see Fig--

ure A-25) with nine gravity stations placed on the ore material of Pile FM-1
and seven measurement stations on Pile #22. For Piles #10 and #23 (see Fig-
ure A-27), three gravity surveys were performed over the adjacent set of piles
with nine gravity stations placed on the ore material of both piles. Each micro-
gravity profile was comprised of four survey programs. Three or four gravity
stations along each line were located off the ore material on either side of the
pile set with one common measurement station located between the piles.
Three and two microgravity profiles were performed over Piles #13 and #17,
respectively (see Figures A-19 and A-22), with each profile consisting of two
survey programs each. Analysis of the corrected gravity data from the two
piles and two pile sets provided computed material density values ranging from
3.388 to 3.449 g/cm®. The average computed bulk density value is

3.419 g/cm® and represents the material density of the ore not investigated with
the microgravity method. The computed weights are listed in Table 2. The
percent difference between the calculated weight and reported gross weight for
each pile are presented in Table 3. Each of the calculated weights are less than
the weights on record with percent differences ranging from -10.48 to

-25.18 percent for all but one pile. Pile #34 had a percent difference of

-46.25 percent. Since percent differences of 10 to 15 percent are to be
expected, percent differences greater than 15 percent are likely caused by poor
definition of the pile base, pile boundary, or settlement of the earth and pad
material underneath the ferromanganese stockpiles.
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Unmanned storage facility, Large, Pennsylvania

Ferrochrome, high-carbon. Eight stockpiles of high-carbon ferrochrome
are located at an unmanned storage facility in Large, PA. The dimensions and
reported gross weights are presented in Table 1. At the time of the survey,
Pile #11, the largest of the seven piles, was being removed. Photographs and
elevation contour plots of each pile are presented in Figures B-1 through B-15
in Appendix B. The pile volumes determined from the elevation data are listed
in Table 2 and indicated on the elevation contour plot for each pile. Each pile
is situated on a weathered asphalt surface except for Pile #11 which is on a
concrete pad. It is also noted that the asphalt surfaces are not horizontal but
slightly irregular and slope downward towards the north. The algorithms avail-
able to the land surveying contractor to model the pile base were limited to
planar surfaces. Therefore, any deviations of the base from a planar surface
will promote errors in the volume calculations. Piles #12 and #20 (see
Figure B-4 and B-6) are also placed alongside an earthen embankment which
may further contribute to erroneous volume calculations.

Microgravity measurements were performed over four of the eight piles at
the site. The piles surveyed are Piles #12, #20, #26, and #28. Two to three
gravity transects were performed over each pile with the number of gravity
stations on and off the ore material varying greatly because of the height and
width of the ore piles and physical constraints of the surrounding terrain.
Computed densities derived using the gravity data analysis procedures range
from 3.386 to 3.794 g/cm® for the four piles directly investigated (see Table 2).
The average material density is 3.639 g/cm® and represents the bulk material
density of the ore piles not surveyed with the microgravity method. The calcu-
lated weights of the eight piles of ferrochrome ore are presented in Table 2.
The percent difference values between the average calculated weight in relation
to the weight on record is outlined in Table 3 and, excluding Pile #11, ranges
from -8.76 to +15.26 percent. The difference values for Piles #20 through
#28 are each below or within the expected error range whereas, the percent
difference for Pile #12 is just outside the error range with a value of +15.26.
The reason for the calculated weights having greater values than the reported
weights is likely poor models of the pile base caused by the sloping and irregu-
lar asphalt surface. Piles #12 and #20, situated alongside an earthen embank-
ment, also have greater than reported pile weights and two of the three greatest
percent difference values at this project area.

Pile #11 was being removed during the microgravity and topographic sur-
veys as shown in Figure B-1. The originally reported pile weight (see Table 1)
prior to removal was 63,554,860 1b. Topographic surveys to determine the
volume of the remaining part of the pile were performed on 14 November
1996. Up until that day, 9,280,020 Ib of ferrochrome had been removed from
the northern end of the pile and trucked to a loading facility. Therefore, the
reported weight of the pile at the time of the topographic measurements was
54,274,840 Ib. The calculated volume of the remaining pile material is
7152.1 yd®. The computed weight of the remaining ferrochrome material,
using an average material density value of 3.639 g/cm?’, is 43,869,109.6 Ib.
The difference between the computed weight and adjusted weight on record is
-19.17 percent.
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Belle Mead Depot, New Jersey

Twelve stockpiles of ore were surveyed at the Belle Mead Depot. The
stockpiled ores consist of: one pile of high-carbon ferrochrome, eight piles of
low-carbon ferrochrome, and three stockpiles of ferromanganese. The pile
descriptions, dimensions, and reported weights as provided by the DNSC are
listed in Table 1. Elevation contour plots and photographs illustrating each ore
pile are presented in Figures C-1 through C-22 in Appendix C. The results for
each group of ore stockpiles are described below.

Ferrochrome, high-carbon. Pile #15, as shown in Figure C-1, is
described by DNSC as high-carbon ferrochrome having a reported weight of
5,443,680 Ib. The ore material is primarily cobble size and situated on a
deteriorated surface comprised of asphalt overlying soil cement. An elevation
contour plot generated from the topographic surveys is illustrated in Figure C-2
and the computed volume is 886.2 yd®>. Two gravity surveys were performed
over the pile as shown in Figure C-2 with nine of the 17 gravity measurements
along each line collected directly over the ore material. The average computed
bulk density value determined from the corrected gravity data is 3.211 g/cm®.
The calculated weight is 4,796,398.3 1b as indicated in Table 2. The computed
weight of the ferrochrome differs from the reported gross weight provided by
DNSC by -11.89 percent (see Table 3).

Ferrochrome, low-carbon. Material classified as low-carbon ferrochrome
is stored in eight stockpiles at the Belle Mead Depot. The piles are designated
as Piles #2, #3 (1 of 2) and #3 (2 of 2), #4 (1 of 2) and #4 (2 of 2), #5, #6, and
#8 and are situated on reinforced concrete pads. The dimensions and reported
gross weights, as provided by DNSC, are indicated in Table 1. It is noted that
the reported weights for both Piles #3 (1 of 2) and #3 (2 of 2) and Piles #4 (1
of 2) and #4 (2 of 2) are listed as one value for each respective pile set. Photo-
graphs and elevation contour plots of the eight stockpiles are presented in
Figures C-3 through C-17 in Appendix C. Pile volumes derived from the
elevation data are noted on each of the contour plots and listed in Table 2.

Microgravity surveys were performed over four individual piles with three
profiles each conducted over Piles #3 (1 of 2), #5, and #8 (see Figures C-6,
C-12, and C-16) whereas data was collected over two profiles on Pile #3 (2 of
2) as shown in Figure C-8. These piles were randomly selected prior to the
site investigation. Survey lines typically consisted of 9 to 11 measurement sta-
tions placed on the ore material and 5 to 7 stations located on the non-ore,
earth material. The gravity data sets collected over Pile #3 (2 of 2) contained
several spurious values which produced suspect and/or unrealistic density val-
ues. Average density values computed from the gravity data collected over the
three remaining stockpiles ranged from 3.033 to 3.211 g/cm?® (see Table 2).
The overall average density value is 3.128 g/cm®. The computed pile weights
for each stockpile are presented in Table 2. Table 3 lists the percent difference
values between the calculated weights and the reported gross weights. The
percent differences range from -7.46 to -21.70 percent with each calculated
weight value underestimating the originally reported weight.
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Ferromanganese, high-carbon. Ferromanganese is stockpiled in three
piles at the Belle Mead Depot. Photographs of the two largest piles, labeled
Piles #16 and #18, are shown in Figures C-19 and C-21. The third stockpile is
labeled Pile #12. Each pile is situated on a deteriorating surface comprised of
asphalt overlying soil cement. The dimensions and reported gross weights of
the three piles are given in Table 1. Elevation contour plots and computed pile
volumes derived from the topographic survey are presented in Figures C-18,
C-20, and C-22 for Piles #12, #16, and #18, respectively. The pile volumes
are also tabulated in Table 2.

Microgravity surveys were performed only over Piles #16 and #18. Three
microgravity profiles were performed over each pile (see Figures C-20 and
C-22) with each survey line consisting of 11 and 14 gravity stations positioned
on the ore material, respectively. Six gravity measurement stations for each of
the six profile lines were located off the ore pile. The average computed mate-
rial density values for Piles #16 and #18 are 3.589 and 3.677 g/cm’, respec-
tively (see Table 2). The overall average material density is 3.633 g/cm’ and is
used in the weight calculations for Pile #12. The calculated weights of
Piles #12, #16, and #18 are 369,867.0 Ib, 23,870,566.1 1b, and
95,937,441.6 b, respectively. The difference between the computed weights
in relation to the weights on record (see Table 3) is approximately +3.34,
-9.66, and -9.26 percent, respectively. The percent differences for each pile
are well within the expected error bounds for this technique but the reason for
the higher than expected weight of Pile #12 is uncertain.

Somerville Depot, New Jersey

Ferrochrome, low-carbon. Piles #3 and #4 at the Somerville Depot are
classified as low-carbon ferrochrome with a reported gross weight, as provided
by DNSC, of 9,183,109 and 5,264,000 1b, respectively (see Table 1). A
photograph of Piles #3 and #4, positioned side by side, is shown in Figure D-1
of Appendix D. The composition of the ferrochrome ranges from gravel-size
particles to cobbles. Each pile is situated on a reinforced concrete pad and,
therefore, no significant settlement of the material beneath the pile is expected.
A wooden barrier constructed of railroad crossties encompasses each of the
piles and cribbing has been constructed between the two piles as shown in Fig-
ure 4. The results of the topographic survey are presented in elevation contour
maps shown in Figures D-2 and D-3 for Piles #3 and #4, respectively. The
estimated volume of each pile is indicated on the contour plots and listed in
Table 2. Three gravity surveys, each composed of four survey programs,
were performed over the adjacent set of piles with 11 gravity stations placed on
the ore material of Pile #3 and seven measurement stations on Pile #4. Three
gravity stations along each line were located off the ore material on either side
of the pile set with one common measurement station located between the piles.
Analysis of the corrected gravity data provided an average computed material
density value of 3.258 g/cm’. The calculated weights of Piles #3 and #4 are
8,499,258.7 and 5,823,779.7 1b, respectively (see Table 2). The percent dif-
ference between the calculated weight and reported gross weight, as listed in
Table 3, is -7.45 percent for Pile #3 and +10.63 percent for Pile #4. Both
percent difference values are well within the expected error range.
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Stockton Depot, California

Ferrochrome, high-carbon. Pile #1, as shown in Figure E-1 of Appen-
dix E, is composed of cobble size material classified as high-carbon ferro-
chrome. A contour map of the ore pile constructed from the measured
elevations is presented in Figure E-2 and has an estimated volume of
180.5 yd®. The pile is situated on a concrete pad. Two gravity surveys were
performed over the pile (see Figure E-2) with each survey line consisting of
10 measurement stations; five of which are positioned on the ore pile material.
Analysis of the corrected gravity data yielded an average material density value
of 3.518 g/cm? (see Table 2). The computed weight of Pile #1 is
1,070,326.4 Ib. The reported gross weight provided by DNSC is 1,178,760 1b
which is approximately 9.20 percent greater than the average calculated weight
determined from the gravity data.

Summary of Results

Comparing the gravimetrically derived weights for each ore stockpile to the
reported weights provided by DNSC, it is observed that the computed weights
of 24 of the 45 piles surveyed are below or within the expected percent differ-
ence error range of +10 to +15 percent as presented in Table 3. The percent
difference between the calculated weights and the weight on record for another
18 ore stockpiles are just outside the expected error range. A summary of the
percent difference between calculated and reported weights for the 45 ore
stockpiles is outlined in Table 4. Remember that one combined weight is docu-
mented for Piles #3 (1 of 2) and #3 (2 of 2) and Piles #4 (1 of 2) and #4 (2 of
2) at the Belle Mead Depot, NJ. The computed weights of the remaining four
piles have differences greater than 25 percent of the reported values. Differ-
ences between the computed pile weights and reported weights may be caused
by any of the following factors:

a. The intricate geometries of some piles or pile edges are poorly defined.

b. Inaccurate elevations or models too simplistic to accurately define the
pile base.

c. Inhomogeneities within the ore creating highly variable density
estimates.

d. Settlement of the ore material below the originally prepared ground
surface.

e. Possible removal of ore material at some piles.
f- Suspect gravity data sets due to equipment problems.

It is also possible that the reported weights for some piles may be inaccurate as
was the case for at least two ore piles at the Sierra Army Depot, CA (Sjostrom
and Butler 1996).
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Looking more closely at the distribution of ore piles versus the percent dif-
ference error ranges presented in Table 4, it is shown that the computed
weights for piles investigated at both the Somerville Depot, NJ and Stockton
Depot, CA are below or within the expected percent difference range of the
reported gross weights for each pile. Piles surveyed at the Seneca Army
Depot, NY each had calculated weights less than the reported weights provided
by DNSC. More importantly, the weight of nine of these piles were within the
expected error bounds of the testing procedure. The remaining 15 piles have
percent difference values greater than 15 percent. All but three of the ferro-
manganese piles have greater than expected error values as shown in Table 3
and this is likely caused by settlement of some of the ore material below the
elevation of the current ground surface. Any material below the current
ground surface cannot be accounted for with the current microgravity and
topographic interpretation procedures. Poor definition of some of the pile
boundaries and bases also added errors in the weight calculations. Poor defini-
tion of the pile base also contributed to the larger than expected errors for the
weights of five of the nine ferrochrome piles. The two aluminum oxide piles
have computed weights within the expected error range even though ore mate-
rial may have been removed from Pile #43 since placement.

Six of the eight ferrochrome piles at the unmanned storage facility in Large,
PA, have computed weight estimates within +10 to +15 percent of the
reported weights. Five of the eight ferrochrome stockpiles have computed
weights greater than the reported weights on record as indicated in Table 4.
This is likely caused by the use of simple planar models to represent the slop-
ing, slightly irregular pads on which the piles are situated. Excluding Pile #11,
the remaining pile has a percent difference value of +15.26 percent. Pile #11,
which was being removed during the investigation, had a computed weight of
43,869,109.6 Ib as of 14 November 1996. The difference between the com-
puted weight and adjusted weight on record (i.e., the originally reported weight
less the quantity of ore removed prior to the survey) is -19.17 percent.

All but one of the ten ore stockpiles investigated at the Belle Mead Depot,
NIJ, have computed pile weights less than the reported weights. In addition, six
of the ten ore piles have percent difference values below or within the expected
error bounds for this technique (see Table 4). The four piles outside the
expected range consist of low-carbon ferrochrome (see Table 3). However,
the material density values are lower than expected when comparing the com-
puted values to those from other surveys over low-carbon ferrochrome.

It is also of interest to note similarities in density values between piles of
similar ore material. The average density values of the 13 ferromanganese ore
piles surveyed at Seneca Army Depot ranged from 3.388 to 3.449 g/cm®
whereas the three piles at the Belle Mead Depot had densities ranging from
3.589 to 3.677 g/cm’®. Both sets of data are less than the average computed
density of 3.903 g/cm® for a pile of ferromanganese surveyed at the Hammond
Depot, IN, in 1995 (Sjostrom and Butler 1996). The ten ore stockpiles of low-
carbon ferrochrome surveyed at the Belle Mead and Somerville Depots had
computed material densities ranging from 3.033 to 3.258 g/cm®. This density
range is less than a computed value of 3.843 g/cm® for a pile of low-carbon
ferrochrome surveyed in 1995 at the Ravenna Army Ammunition Plant, OH
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(Sjostrom and Butler 1996). A total of 18 piles of high-carbon ferrochrome
were surveyed at the Seneca Army Depot, Belle Mead Depot, Stockton Depot,
and at the facility in Large, PA. The average bulk density values for this
material had a wide range with values varying from 2.991 to 3.794 g/cm®. Yet
these values are in line with computed material densities for similar material
determined at a site in Charleston, SC, in which the densities ranged from
3.085 to 3.775 g/cm?® (Sjostrom and Berry 1997). No correlation could be
found during this study relating the type of placement surface, whether natural
material, asphalt, or concrete, to distinct difference values between the com-
puted and reported weights.
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4 Conclusions

The Defense National Stockpile Center (DNSC) of the Defense Logistics
Agency maintains stockpiles of high-grade ores at various defense depots and
storage facilities throughout the country. DNSC has a requirement to produce
current weight estimates for 45 statistically selected ore piles as part of a
national audit. The 45 strategic ore stockpiles selected are located at the fol-
lowing sites: Seneca Army Depot, New York; an unmanned storage facility,
Large, Pennsylvania; Belle Mead Depot and Somerville Depot, New Jersey;
and Stockton Depot, California. The pile materials are all heavy metal ores
consisting of either aluminum oxide, high-carbon or low-carbon ferrochrome,
or high-carbon ferromanganese.

Microgravity measurements were performed over the ore stockpiles to pro-
vide average bulk density values of the ore material. Depending on the ore pile
dimensions, two to four gravity survey lines are conducted perpendicular to the
strike of the pile. The measured gravity data are referenced to the base station
datum for each profile by correcting for the effects due to latitude, elevation,
topography, earth tides, and instrument drift. In this manner, variations in the
corrected gravity values are assumed to be due solely to the ore pile material.
The corrected gravity data sets are analyzed using Parasnis’ method to compute
a volume-averaged bulk density value for ore pile material. This method has
the advantage of averaging the effect of density variations more accurately than
can be done from surface or core samples. The pile density determination
accuracy is estimated to be approximately +0.2 g/cm?® (12.5 Ib/ft®). Ore pile
volumes were computed from three-dimensional pile representations con-
structed from the measured elevation data and estimated to be within five per-
cent of the actual value.

The weight of stockpiled ore is calculated by multiplying the average bulk
density value and computed pile volume. The percent difference between the
computed weights and the reported gross weights for each stockpile should be
within +10 to +15 percent. Comparing the computed weights for each ore
stockpile to the reported weights provided by DNSC, it is observed that 24 of
the 45 piles surveyed are below or within the expected percent difference error
range. The percent difference values for another 18 ore stockpiles range from
+15 to +25 percent. Three piles have computed weights differing by greater
than 25 percent of the reported values.
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The highest percent differences overall were computed at the Seneca Army
Depot, NY where 15 stockpiles, all underestimating the reported gross weight,
have percent difference values greater than 15 percent. The higher than
expected difference values are likely caused by settlement of some of the ore
material below the elevation of the current ground surface. Any material
below the current ground surface cannot be accounted for with the current
microgravity and topographic interpretation procedures. Poor definition of
some pile boundaries and bases also added errors in the weight calculations.
Poor definition of the pile base was also the contributing factor to the larger
than expected errors for the weights of five of the nine ferrochrome piles at the
Seneca Army Depot.

Five of the eight ferrochrome piles at the unmanned storage facility in
Large, PA, have computed weight estimates greater than the recorded weights.
These errors are likely caused by the use of simple planar models to represent
the sloping, slightly irregular pads on which the piles are situated. However,
six of the eight piles still have computed weights within the 10 to 15 percent of
the reported weights. At the Belle Mead Depot, NJ, all but one of the ten ore
stockpiles have computed pile weights less than the reported weights. In addi-
tion, six of the ten ore piles have percent difference values below or within the
expected error bounds for this technique. The ore piles surveyed at the Somer-
ville Depot, NJ, and Stockton Depot, CA, have computed weights within
10 percent of the weights on record.
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Figure 6.

Elevation measurement at a microgravity station
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Table 1

Reported Description of Ore Stockpiles

It

|

Pile Length, W Height, |Reported Gro:I- l
Number ft ft ft Weight, Ib Material Description
Seneca Army Depot,L_i___
40 525 100 30 110,812,140 |Aluminum Oxide
43 131 100 20 29,964,520 |Aluminum Oxide
18 235 74 15 30,492,620 [Ferrochrome, High Carbon
19 40 35 10 1,962,550 |Ferrochrome, High Carbon
20 57 45 9 3,362,725 |Ferrochrome, High Carbon
125 35 30 6 568,640 |Ferrochrome, High Carbon
25A 35 30 6 544, 000 |Ferrochrome, High Carbon
25B 40 25 6 635,100 |Ferrochrome, High Carbon
25C 27 20 6 152,600 |Ferrochrome, High Carbon
25D 47 35 8 879,840 |Ferrochrome, High Carbon
49 87 55 12 9,405,540 |Ferrochrome, High Carbon
10 125 32 14 7,754,250 |Ferromanganese, High Carbon
11 71 33 12 3,293,400 |Ferromanganese, High Carbon
13 159 36 9 7,837,380 [|Ferromanganese, High Carbon
14 159 32 12 7,978,000 |Ferromanganese, High Carbon
17 57 36 12 2,942,140 |Ferromanganese, High Carbon
21 143 72 13 8,399,300 |Ferromanganese, High Carbon
22 66 32 15 3,687,860 |Ferromanganese, High Carbon
23 166 64 15 22,327,160 |Ferromanganese, High Carbon
131 118 100 23 32,875,560 |Ferromanganese, High Carbon
34 ' 34 24 8 1,099,980 |Ferromanganese, High Carbon
35 157 30 12 10,208,220 |Ferromanganese, High Carbon
37 86 22 8 2,045,400 |Ferromanganese, High Carbon
FM-1 280 100 25 58,600,460 |Ferromanganese, High Carbon i
| Unmanned Storage Site, Large, PA 1
||1 1 190 125 30 63,554,860 |[Ferrochrome, High Carbon
||1 2 100 150 15 32,347,540 |Ferrochrome, High Carbon
"20 95 50 15 8,402,100 |Ferrochrome, High Carbon
"24 55 115 6 3,803,230 |Ferrochrome, High Carbon
25 45 25 6 563,600 |Ferrochrome, High Carbon
26 50 75 10 4,911,600 |Ferrochrome, High Carbon It
27 35 20 4 446,300 |Ferrochrome, High Carbon
28 32 35 8 1,125,820 |Ferrochrome, High Carbon
{Continued)




Table 1 (Concluded)

Pile Length, |Width, |Height, |Reported Gross
Number ft ft J ft — ,){Veight, Ib Material Description
| . V____ﬁBeI\Ie Mead Depot, NJ
.1 5 45 79 12 5,443,680 |Ferrochrome, High Carbon
2 163 49 20 14,482,025 |Ferrochrome, Low Carbon
3(1of2) | 149 49 20 17,236,526 [Ferrochrome, Low Carbon
3 (2 of 2) 46 48 19
4 (1 of 2) 35 49 20 12,434,270 |Ferrochrome, Low Carbon
4 {2 of 2) 78 49 20
5 101 49 15 9,121,120 |Ferrochrome, Low Carbon
6 223 48 20 21,116,400 |Ferrochrome, Low Carbon
8 108 48 25 10,953,510 |Ferrochrome, Low Carbon
12 6 48 6 357,920 |Ferromanganese, High Carbon
16 85 115 24 26,422,660 |Ferromanganese, High Carbon
18 217 113 25 105,729,960 |Ferromanganese, High Carbon
] . Somerville Depot, NJ
"3 100 } 44 16 9,183,109 |Ferrochrome, Low Carbon
4 100 35 12 5,264,000 |Ferrochrome, Low Carbon
' Stockton Depot, CA
“1 75 35 3 1,178,760 |Ferrochrome, High Carbon




Table 2
Computed Volume, Material Density, and Weight of Ore Stockpiles
Measured Ave—rage Average Average Calculated 1
Pile Number | Volume, yd? Density, glem® Density, Ib/ft® Weight, b
_ Seneca Army Depot, NY
40 3;,202.5 1.925 120.17 97,997,909.8
43 7,467.9 2.125 132.66 26,748,572.8
18 4,981.2 3.178 198.40 26,682,778.9
19 340.8 2.991 186.72 1,718,142.5
20 511.7 3.096 193.28 2,670,296.9
25 81.8 3.096 193.28 426,871.8
25A 99.0 3.096 193.28 516,629.7
25B 87.7 3.096 193.28 457,660.8
25C 23.4 3.096 193.28 122,112.5
25D 147.5 3.096 193.28 769,726.0
49 1,437.9 3.024 188.78 7,329,150.8
10 1,115.4 3.388 211.51 6,369,674.3
11 511.6 3.419 213.44 2,948,307.8
13 1,105.6 3.419 213.44 6,371,479.9
14 1,094.8 3.419 213.44 6,309,240.4
17 430.6 3.418 213.44 2,481,511.6
21 1,216.4 3-.419 213.44 7,010,011.0
22 474.6 3.449 215.31 2,758,078.9
23 3,276.5 3.388 211.51 18,710,988.7
31 4,880.2 3.419 213.44 28,124,182.5
34 102.6 3.418 213.44 591,275.2
35 1,454.4 3.419 213.44 8,381,585.0
37 279.9 3.419 213.44 1,613,040.2
FM-1 8,909.9 3.449 215.31 51,797,549.0
Unmanned Storage Site, Large, PA
11 7,152.1 3.639 227.18 43,869,109.6
12 5,829.9 3.794 236.85 37,282,207.4
20 1,659.5 3.386 211.38 9,471,252.1
24 702.7 3.639 227.18 4,310,177.9
25 90.0 3.639 227.18 552,036.5
26 | 731.0 3.637 227.05 4,481,298.4
27 80.2 3.639 227.18 491,925.8
28 189.5 3.740 233.48 1,194,604.1
{Continued)




| Table 2 (Concluded)

Average Average Calculated

Measured Average
Density, Ib/ft® | Weight, Ib

Volume, yd® Density,

P“,,e, quber

_ Belle Mead Depot, NJ o N
15 886.2 ] 3.211 200.46 ] 4,796,398.3
2 2,467.5 3.128 195.27 13,009,694.3
3 (1 of 2) 2,281.4 3.211 200.46 | 12,347,667.6
3 (2 of 2) 401.6 3.128 195.27 2,117,403.5
4 (1 of 2) 944.9 3.128 195.27 4,981,908.9
4 (2 of 2) 100.4 3.128 195.27 5,344,124.1
5 1,441.9 3.139 195.96 7,629,035.6
6 3,706.1 3.128 195.27 18,5640,112.7
8 1,677.7 3.033 189.34 8,576,891.2
12 60.4 3.633 226.80 369,867.0
16 3,945.9 3.589 224.05 23,870,566.1
15,478.3 3.677 229.55 95,937,441.6 |
e . Somerville Depot, NJ , . 7 ]
1,547.7 3.258 203.39 8,499,258.7
1,060.5 3.258 é3.39 5,823,779.7
B Stockton Depot, CA ]
180.5 3.518 219.62 1,070,326.4




Table 3 :
Comparison of Reported and Computed Ore Pile Weights
Reported Gross T Average Calculated Percent
Pile Number Weight, lbs Weight, lbs Difference
] Seneca Army Depot, NY _
40 110,812,140 97,997,909.8 - -11.56
43 29,964,520 26,748,572.8 -10.73
18 30,492,620 26,682,778.9 -12.49
19 1,962,550 1,718,142.5 -12.45
20 3,362,725 2,670,296.9 -20.59
25 568,640 426,871.8 -24.93
25A 544, 000 516,629.7 -5.03
25B 635,100 457,660.8 -27.94
25C 152,600 122,112.5 -19.98
25D 879,840 769,726.0 -12.52
49 9,405,540 7,329,150.8 -22.08
10 7,754,250 6,369,674.3 -17.86
11 3,293,400 2,948,307.8 -10.48
13 7,837,380 6,371,479.9 -18.70
14 7,978,000 6,309,240.4 -20.92
17 2,942,140 2,481,511.6 -15.66
21 8,399,300 7,010,011.0 -16.54
22 3,687,860 2,759,078.9 -25.18
23 22,327,160 18,710,989.7 -16.20
31 32,875,660 28,124,182.5 -14.45
34 1,099,980 591,275.2 -46.25
35 10,208,220 8,381,585.0 -17.89
37 2,045,400 1,613,040.2 -21.14
FM-1 58,600,460 51,797,548.0 -11.61
Unmanned Storage Site, Large, PA
11 63,554,860' )
54,274,840° 43,869,109.6 -19.17
12 32,347,540 37,282,207.4 +15.26
20 8,402,100 9,471,252.1 +12.72
24 3,803,230 4,310,177.9 +13.33
25 563,600 552,036.5 -2.05
26 4,911,600 4,481,298.4 -8.76
27 446,300 491,925.8 +10.22
28 1,125,820 1,194,604.1 +6.11
{Continued)
! Originally reported weight.
2 Weight as of 14 November 1996 when the volume determination was made. Pile #11
_vLai_____M removed during the investigation.




Table 3 (Concluded) _ 7
Reported Gross ;verage Calculated Percent

Pile Number Weight, Ibs . | Weight, bs — Difference
| - ; Belle Mead Depot, NJ

15 5,443,680 4,796,398.3 -11.89

2 14,482,025 13,009,694.3 -10.17

3 (10f 2) 17,236,526 14,465,071.1 -16.08

3 (2 of 2)

4 {1 of 2) 12,434,270 10,326,032.8 -16.96

4 (2 of 2)

5 9,121,120 7,629,035.6 -16.36

6 21,116,400 19,540,112.7 -7.46

8 10,953,510 8,576,891.2 -21.70
12 357,920 369,867.0 +3.34 ﬂ
“ 16 26,422,660 23,870,566.1 -9.66 ||
‘I 18 105,729,960 95,937,441.6 -9.26 ||
ﬂ Somerville Depot, ;J . B H
I' 3 9,183,108 8,499,258.7 -7.45
P 4 5,264,000 5,823,779.7 +10.63 M
l o Stockton Depot, CA — , I
[l 1,178,760 1,070,326.4 [ -s.20




Table 4

Distribution of Stockpiles Versus Percent Difference Ranges

lis subdivided into Piles #4 (1 of 2) and #4 (2 of 2).

Number of Ore Stockpiles
Expected
Percent Difference | Seneca Army Belie Mead | Somerville | Stockton Error Range
Range Depot, NY Large, PA | Depot, NJ | Depot. NJ |Depot, CA |Total |Description |
> +40% - - - - - - Well Outside
Calculated
Weight +25% to +40% - - - . . _
Greater .
Than +15% to +25% - 1 - - - 1 Outside
IR d
\A‘fgg:f +10% to +15% | - 3 ; 1 : 4 |within
0% to +10% - 1 1 - - 2 Below
0% to -10% 1 2 3 1 1 8
Calculated
Weight -10% to -15% 8 - 2 - - 10 Within
Less
Than -15% to -25% 12 1! 4 - - 17 Qutside
‘Cj‘;gﬁfd -25% to -40% 2 ; ; ; - 2 | wei outsice
| < -40% 1 - _ - - - 1
Total 24 8 10? 2 1 _J_ 452

' Pile #11 at Large, PA was being removed during the gravity investigation.
2 At the Belle Mead Depot, Pile #3 is divided into the separate piles labeled #3 (1 of 2) and #3 (2 of 2). Likewise, Pile #4
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Figure A-1. Pile #40, Seneca Army Depot, NY
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Figure A-7. Piles #19 (center) and #25-D (left}, Seneca Army Depot, NY
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Piles #49 (left), #20 (right), and #25 (center), Seneca Army Depot, NY

Figure A-15,
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High-Carbon Ferromanganese

Appendix A Ore Pile Elevation Contour Plots and Photographs, Seneca Army Depot, NY A21




Pile #13 and north end of Pile #35, Seneca Army Depot, NY

Figure A-18.
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A28

Piles #22 (center) and #14 (back left) as viewed from Pile FM-1, Seneca Army Depot, NY

Figure A-24,
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Piles #23 and #10, Seneca Army Depot, NY

Figure A-26,
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Piles #34 (center), #37, #21 (back), #11 (back right), and #14 (right), Seneca Army Depot,

NY

Figure A-28,
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Appendix B

Ore Pile Elevation Contour Plots
and Photographs, Unmanned
Storage Facility, Large, PA

Appendix B Ore Pile Elevation Contour Plots and Photographs, Unmanned Storage Facility, Large, PA B1




uoleBiisaAul 8yl j0 awil 8y} 1e alls ayl Wodj
Buleq sem | L# 8|id "Vd ‘@BieT ‘966 | 19GWSAON G| JO SB | L # 3]id JO 808} YLION

=
SN
S

"1-g 8nbiy4

Appendix B Ore Pile Elevation Contour Plots and Photographs, Unmanned Storage Facility, Large, PA

B2



Vvd ‘eBieq ‘| L # a)id Jo 10|d unoUOD uoneAd|g ‘g-g 8inbiy

96 AON om._Boo_ 0€=,1 IJWoS

0816 SH ‘9YNESHOA
SYIINIONI 40 Sd¥0D
NOLLVIS INIWY3JX3 SAVMYILYM

dop uonobas|3 ojid 810
awloayosousq ‘| |# 94
Vg ‘ebup7

0o Jop
0g) S0

(3ybiam

IpuibLio) 'sq 098°vGG‘C9 blom ss049 paioday
"SPA'ND L'ZGLL PWNOA 9jid 810 pandwo)d
9sDQ SD ‘14 0°00| :(UOIIDAD|Y 80UBIB40Y

34 0°| :DAJSIU| JNOIUOD UCHDAS(Y

e ™
0¢ Gl 0 Gl
1994 Ul 3|DOg

‘9661 JequisroN |

j0 8D |1# e)id sejpssn) joid sy
‘uopjobisaaut sy} Buunp eys eyy woly
pasowe.s Bueq som | 1§ 8|4 930N

a1a4ou0) 0dA] ppyg

B3

Appendix B QOre Pile Elevation Contour Plots and Photographs, Unmanned Storage Facility, Large, PA




vd ‘ebieq ‘gL # ajd j0

apis ulsjseq

"g-g ainbly

Appendix B Ore Pile Elevation Contour Plots and Photographs, Unmanned Storage Facility, Large, PA

B4



Vd ‘ebie ‘gL # 9|id 10 10|d INOILOD LOIIRAD|T  ‘H-g 84nBi-

96 AON €1 “Boc_ 0g=,1 3OS

0816C SW *0dNESHOIA
SYI3NIONI 40 SN0
NOUVLS IN3NY¥3dX3 SAVAYILYM

doy uonpAd|g 3|ld 240
swiodyoouasey ‘z1# ojid
vd ‘ebupq

'Sq} 0¥S'LYL'CE Yblom ssou9 peploday
"SPA'ND 6'628G OWN[OA 9|ld @10 paindwo)
oSDQ SD ‘34 |°/0| :UOI}DAB|J ©OUBIOsSY

‘34 Q'l :DAJBIU] JNOJUOD UO[IDAS|T

I ™ o
o¢ Sl 0 Gl
}994 Ul 9|pog

ypydsy :odk] ppd

jusunjupqwy jo doj

juswsjupquwiy jo 80|

B5

Appendix B Ore Pile Elevation Contour Piots and Photographs, Unmanned Storage Facility, Large, PA



o
Thda

-
o

e

.

e
S

vd ‘eBieT ‘oz # 9lid

"G-g anbiy

Appendix B Ore Pile Elevation Contour Plots and Photographs, Unmanned Storage Facility, Large, PA

B6



vd

’

abieq ‘Oz # 9lid 4o 10/d JnojUOD UonBAB|  ‘9-g @inbi4

96 AON Zi “Bco_ 02=,1 :37v0S

OBI6S SH "DUNASNIIA
SYIINIONI 4O SdNOD
NOUYLS INIWYILX3 SAYMNILYM

dop uonobAaa|3 apd 240
swouyooulag ‘Oz# o4
vd ‘ebupy

0o{Joo
0 ]

'sq| 001°20+‘8 ‘yblom ssou9 pajiodey
"SPA'ND G'6GY'L BWNIOA Bjid 940 paindwo)
9sDq SD ‘}4 9°/(Q| :UOIIDAB|F ©o0oudIBjeY

‘14 0°l :IDAIBIU} JNOJUOD UOIIDAZT

s ™ gy
0¢ Ol 0 § 0l
}984 ul 8|pog

jusunjuoquiy Jo 80

}pydsy :adk] ppod

juswuoquwy jo dojy

B7

Appendix B Ore Pile Elevation Contour Plots and Photographs, Unmanned Storage Facility, Large, PA




B8

Piles #24 (back) and #27, Large, PA

Figure B-7.
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Pile #26, Large, PA

Figure B-12.

Appendix B Ore Pile Elevation Contour Plots and Photographs, Unmanned Storage Facility, Large, PA B13
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Pile #28, Large, PA

Figure B-14.

Appendix B Ore Pile Elevation Contour Plots and Photographs, Unmanned Storage Facility, Large, PA B15




Vvd ‘eBie ‘gz # alid Jo 10/d uN0IUOD UOIIBAS|]

"GL-g a.nbi4

96 AON £1 @100 ,01=, :F¥OS

0BLEC SH "OdNESHOIA
SYIINIONI 40 SdH0D
NOILYLS INIWYIDX3 SAVAN3LYM

dop uonDAR|T Bftd 84Q
awiolyooms{ ‘QzH 9|y
vd ‘ebup]

oo Jon
ogg 4o

'sql 0Z8'GZL‘L :3ybrap ssoug papodey
'SPA'ND G'681 :BWN[OA djld 840 pandwo)
©8DQ SD °}4 Q'Z0] :UOIIPAB|3 O2usLd Y
14 07l :PAISIU| JNOIUOYD UOHDAS|]

™™

ot S 0 62 S
j284 ur 3|pog

ypydsy :adA] ppd

Appendix B Ore Pile Elevation Contour Plots and Photographs, Unmanned Storage Facility, Large, PA

B16



Appendix C
Ore Pile Elevation Contour Plots

and Photographs, Belle Mead
Depot, NJ
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High-Carbon Ferrochrome
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Pile #15, Belle Mead Depot, NJ

Figure C-1.
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Low-Carbon Ferrochrome
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Ccé

Piles #2 (left) and #3 (1 of 2), Belle Mead Depot, NJ

Figure C-3.
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Pile #3 (1 of 2), Belle Mead Depot, NJ

Figure C-5.
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Pile #4 (1 of 2) (center), Belle Mead Depot, NJ

Figure C-9.
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Pile #5, Belle Mead Depot, NJ

Figure C-11.
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Pile #6, Belle Mead Depot, NJ

Figure C-13.
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.

Piles #8 (center), #3 (2 of 2), and #4 (2 of 2) (far left), Belle Mead Depot, NJ

Figure C-15.
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Appendix C Ore Pile Elevation Contour Plots and Photographs, Belle Mead Depot, NJ

View looking east towards Pile #16, Belle Mead Depot, NJ

Figure C-19,

Cc23
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